WESTYN HILLIARD

[16]: # Imports

import pandas as pd

import matplotlib.pyplot as plt

from statsmodels.tsa.arima.model import ARIMA
from sklearn.metrics import mean_squared_error
import numpy as np

1.1 Load the Dataset

[4]: # Load the dataset
file_path = 'us_retail_sales.csv' # Make sure to update this with the actual,
wpath
retail_data = pd.read_csv(file_path)

# Display the first few rows to understand the structure
retail_data.head()

[4]: YEAR JAN FEB MAR APR MAY JUN JUL AUG \
1992 146925 147223 146805 148032 149010 149800 150761.0 151067.0
1993 157555 156266 154752 158979 160605 160127 162816.0 162506.0
1994 167518 169649 172766 173106 172329 174241 174781.0 177295.0
1995 182413 179488 181013 181686 183536 186081 185431.0 186806.0
1996 189135 192266 194029 194744 196205 196136 196187.0 196218.0

s W NN -, O


Mobile User

Mobile User

Mobile User


SEP 0CT NOV DEC
1525688.0 153521.0 153583.0 155614.0
163258.0 164685.0 166594.0 168161.0
178787.0 180561.0 180703.0 181524.0
187366.0 186565.0 189055.0 190774.0
198859.0 200509.0 200174.0 201284.0

S W N - O

1.2 Transform the Dataset

[5]:|# Melt the data from wide format to long format
retail_data_long = retail_data.melt(id_vars=['YEAR'], var_name='Month',
«~value_name='Sales')

# Create a proper datetime column by combining the year and month
retail_data_long['Date'] = pd.to_datetime(retail_data_long['YEAR'].astype(str)
o+ '-' + retail _data_long['Month'], format='%Y-%b')

# Drop unnecessary columns (we no longer need the 'YEAR' and 'Month' columnsy
wseparately)
retail_data_long = retail_data_long[['Date', 'Sales']]

# Sort by date to ensure time-series order
retail_data_long = retail_data_long.sort_values(by='Date').
~reset_index(drop=True)

# Display the first few rows to ensure the transformation is correct
retail_data_long.head()

[5]: Date Sales
0 1992-01-01 146925.0
1 1992-02-01 147223.0
2 1992-03-01 146805.0
3 1992-04-01 148032.0
4 1992-05-01 149010.0

Sorting: It’s essential to sort the data by date to ensure that the time series is in the correct
chronological order.

1.3 Plot the Data

[7]: # Plot the retail sales over time
plt.figure(figsize=(12, 6))
plt.plot(retail_data_long['Date'], retail_data_long['Sales'], label='Monthly,
~Retail Sales', color='b')
plt.title('US Monthly Retail Sales (1992-2021)', fontsize=16)
plt.xlabel('Date', fontsize=14)
plt.ylabel('Sales ($)', fontsize=14)



plt.grid(True)
plt.legend()
plt.xticks(rotation=45)
plt.tight_layout ()
plt.show()

US Monthly Retail Sales (1992-2021)

—— Monthly Retail Sales

500000 A

400000 A

Sales ($)

300000 +

200000 4

1.3.1 Key Observations:
Upward Trend (1992-2007):

e From 1992 to around 2007, there is a clear upward trend in retail sales, showing steady growth
over time. This reflects general economic growth and increased consumer spending during
this period.

2008 Financial Crisis Impact:

o Around 2008, there is a noticeable dip in retail sales, which aligns with the global financial
crisis. This sharp decline shows a reduction in consumer spending during the economic
downturn.

o Retail sales recover after the crisis, but the dip highlights the impact of macroeconomic
conditions on retail activity.

Post-2010 Recovery:

o After 2010, the retail sales growth resumes, indicating economic recovery. The trend continues
upwards, showing consistent growth through the 2010s.

COVID-19 Impact (2020):

e In 2020, there is a sharp and significant dip, likely due to the COVID-19 pandemic. During
the early months of the pandemic (March-April 2020), retail sales plummeted as stores closed
and consumer spending decreased.



[8]:

o However, retail sales quickly rebounded by the middle of 2020, and there is a noticeable surge
towards the end of 2020 and early 2021. This reflects changes in consumer behavior, such as
a shift to online shopping and increased government stimulus programs boosting consumer
spending.

Recent Spike (2021):

e The sharp increase in retail sales in early 2021 suggests a surge in consumer spending post-
pandemic, driven by economic recovery, reopening of businesses, and possibly additional
government stimulus.

Summary:

The plot shows steady growth in retail sales over the past few decades, with two significant disrup-
tions:

e The 2008 financial crisis.
e The COVID-19 pandemic in 2020.

Both disruptions were followed by periods of recovery and increased spending, with a particularly
strong rebound in 2021.

1.4 Split between test and train data

# Define the start and end date for the test set (July 2020 - June 2021)
test_start_date = '2020-07-01'
test_end_date = '2021-06-30'

# Split into training and testing sets

train_data = retail_data_longl[retail_data_long['Date'] < test_start_datel

test_data = retail_data_long[(retail_data_long['Date'] >= test_start_date) &,
~(retail_data_long['Date'] <= test_end_date)]

# Display the sizes of the training and test sets
print(f"Training set size: {len(train_data)} records")
print(f"Test set size: {len(test_data)} records")

# Optional: Display the first few rows of the training and test sets
print(train_data.head())
print (test_data.head())

Training set size: 342 records
Test set size: 12 records
Date Sales
0 1992-01-01 146925.0
1 1992-02-01 147223.0
2 1992-03-01 146805.0
3 1992-04-01 148032.0
4 1992-05-01 149010.0
Date Sales



[12]:

342 2020-07-01
343 2020-08-01
344 2020-09-01
345 2020-10-01
346 2020-11-01

481627.0
483716.0
493327.0
493991.0
488652.0

1.5 Build a Predictive Model
1.5.1 ARIMA model-

# Fit an ARIMA model to the training

data

# Order parameter (p, d, gq) can be tuned as needed (we'll start withy

~ARIMA(5,1,0) as an ezample)

model = ARIMA(train_datal['Sales'], order=(5, 1, 0))

model _fit = model.fit()

# Summary of the model
print (model_fit.summary())

SARIMAX Results

# ARIMA(p=5, d=1, q=0)

Dep. Variable: Sales No. Observations: 342
Model: ARIMA(5, 1, 0) Log Likelihood -3442.629
Date: Sat, 21 Sep 2024 AIC 6897 .257
Time: 13:49:14 BIC 6920.249
Sample: 0  HQIC 6906.417
- 342

Covariance Type: opg

coef std err z P>|z]| [0.025 0.975]
ar.L1 -0.0087 0.009 -0.952 0.341 -0.027 0.009
ar.L2 -0.1073 0.015 -7.207 0.000 -0.136 -0.078
ar.L3 -0.0159 0.046 -0.343 0.732 -0.107 0.075
ar.L4 0.0192 0.100 0.192 0.848 -0.177 0.215
ar.L5 0.0114 0.131 0.087 0.931 -0.245 0.268
sigma?2 3.126e+07 1.91e-08 1.64e+15 0.000 3.13e+07 3.13e+07
Ljung-Box (L1) (Q): 0.66  Jarque-Bera (JB):
54142.55
Prob(Q): 0.42 Prob(JB):
0.00
Heteroskedasticity (H): 14.36  Skew:
0.66
Prob(H) (two-sided): 0.00  Kurtosis:
64.72




Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-
step) .

[2] Covariance matrix is singular or near-singular, with condition number
3.04e+29. Standard errors may be unstable.

1.5.2 Key Parts of the Output:

Model Summary:

Dep. Variable (Sales): The dependent variable being modeled is “Sales.”
No. Observations: The number of observations used for modeling (342 months of data).

Model: ARIMA(5, 1, 0) — this means the model uses 5 autoregressive terms (AR), 1 differ-
encing term (I), and 0 moving average terms (MA).

Log Likelihood: -3442.629. This is a measure of the model fit, but not easily interpretable
on its own.

AIC (Akaike Information Criterion): 6897.257. Lower values of AIC indicate a better
fit, but AIC values are only meaningful when compared across models.

BIC (Bayesian Information Criterion): 6920.249. Similar to AIC, BIC penalizes models
for complexity (more parameters). Lower values are better.

AR Coefficients (AR.L1, AR.L2, AR.L3, etc.):

These are the autoregressive terms (lags). For ARIMA(5, 1, 0), five lags (L1 to L5) are used. The
coefficients represent the contribution of each lagged value to the prediction.

Significant Terms:

ar.L2: Has a coefficient of -0.1073 with a p-value of 0.000 (less than 0.05), meaning it’s
statistically significant.

Other lags (L1, L3, L4, L5) are not statistically significant (p-values > 0.05), which suggests
they do not strongly contribute to the model’s predictive power.

Sigma™2 (Residual Variance):

sigma”2 represents the variance of the residuals (errors) of the model. A large value
(3.125e+4-07) suggests high variability in the data that the model has not captured well.

Diagnostic Tests:

Ljung-Box Test (Q): Used to test for autocorrelation in the residuals. A p-value of 0.42
(greater than 0.05) suggests that there’s no significant autocorrelation left in the residuals,
which is a good sign for the model.

Jarque-Bera Test (JB): Tests whether the residuals are normally distributed. A p-value
of 0.00 (less than 0.05) suggests that the residuals are not normally distributed.



» Heteroskedasticity Test (H): Tests for constant variance of the residuals. A value of 14.36
with a p-value of 0.00 indicates heteroskedasticity, meaning the residuals’ variance changes
over time.

1.6 Key Observations:
Significant Terms:

o The second autoregressive lag (ar.L2) is the only significant term in the model with a p-value
less than 0.05, indicating it is contributing to the model’s predictions.

o The other autoregressive terms (L1, L3, L4, L5) are not statistically significant and may not
be adding much predictive power.

Model Fit Issues:

e The warnings indicate that the covariance matrix is near-singular, suggesting potential insta-
bility in the parameter estimates. This can make standard errors unreliable.

e The Jarque-Bera test indicates that the residuals are not normally distributed, which may
indicate model misspecification.

o The heteroskedasticity test suggests the residuals’ variance is not constant over time (i.e., the
data may exhibit periods of volatility that the model is not accounting for).

Model Performance (AIC/BIC):

e The AIC and BIC values can be used to compare different models. While lower values suggest
better fit, we would need to compare this model’s AIC and BIC to other models (e.g., ARIMA
with different parameters) to know if this is optimal.

1.6.1 Predictions on Test set -

[21]: | # Forecast for the test set (we use the length of the test set for forecasting)
forecast = model_fit.forecast(steps=len(test_data))

# Add the forecasted walues to the test data
test_data.loc[:, 'Predicted_Sales'] = forecast.values

# Display the test data with actual and predicted sales
test _datal[['Date', 'Sales', 'Predicted_Sales']].head()

[21]: Date Sales Predicted_Sales
342 2020-07-01 481627.0 469487 .694410
343 2020-08-01 483716.0 463787.997065
344 2020-09-01 493327.0 464692.971557
345 2020-10-01 493991.0 466750.423558
346 2020-11-01 488652.0 466955.277802

1.6.2 Observations:
Actual vs Predicted Sales:



[15]:

The actual sales values for each month are slightly higher than the predicted sales values.
However, the predictions are fairly close, indicating that the model is doing a decent job of
capturing the general trend of the data.

Trend Comparison:

The model captures the overall direction and trend of sales. For instance, the predicted sales
increase between September and October, which aligns with the actual sales data.

There is still a gap between the actual and predicted values, but the difference does not seem
overly large given the complexity of retail sales forecasting.

# Plot the actual vs predicted sales for the test set

plt.
.plot(train_data['Date'], train_datal['Sales'], label='Training Data',

plt

figure(figsize=(10, 6))

~color='blue')

plt

.plot(test_data['Date'], test_datal['Sales'], label='Actual Sales (Test

~Data)', color='green')

plt.

plot(test_datal['Date'], test_datal['Predicted_Sales'], label='Predicted,,

~Sales (Test Data)', color='red', linestyle='--')

plt
plt
plt

plt.
.grid(True)
plt.
.tight_layout ()

plt

plt

plt.

.title('US Retail Sales: Actual vs Predicted')
.xlabel('Date')
.ylabel('Sales ($)')

legend ()
xticks(rotation=45)

show ()

US Retail Sales: Actual vs Predicted

—— Training Data
—— Actual Sales (Test Data)
=== Predicted Sales (Test Data)

500000 A

400000 4

Sales ($)

300000 A

200000 1




This plot displays the comparison between actual retail sales and predicted sales based on your
ARIMA model for the test period (July 2020 to June 2021):

Key Elements:

o Blue Line: Represents the training data (US retail sales from 1992 to June 2020), which
was used to build the predictive model.

o Green Line: Represents the actual retail sales data for the test period (July 2020 to June
2021).

e Red Dashed Line: Represents the predicted sales generated by the ARIMA model for the
test period (July 2020 to June 2021).

Observations:
Predicted vs Actual:

e The red dashed line shows the ARIMA model’s predictions for retail sales, while the green
line shows the actual values.

o There is a clear difference between the actual sales (which exhibit a sharp upward trend) and
the predicted values, where the model underestimates the rise in retail sales during the test
period.

Sharp Increase in Actual Sales:

o The actual retail sales (green line) show a significant and sharp increase, which might be due
to post-COVID-19 economic recovery, increased consumer spending, and other factors that
were difficult for the model to predict.

e The predicted values show more stability, which suggests that the ARIMA model didn’t fully
capture the sudden recovery and growth in retail sales during this period.

Model’s Limitations:

o The red dashed line (predictions) is relatively flat compared to the steep rise in the actual
data, indicating that the model is not capturing the recent dynamics in the data effectively.

e This could be due to the model being trained on historical data that did not contain such
sharp, rapid increases, as seen post-2020.
1.6.3 Conclusion:

e The ARIMA model provides a reasonable baseline prediction for the test period but struggles
to account for the sharp rise in sales observed in the actual data.

o This suggests that the model may need further tuning (e.g., trying a different order of ARIMA,
considering external factors, or using a more sophisticated model) to capture these dynamics.

e Given the mismatch between the actual and predicted values, calculating the Root Mean
Squared Error (RMSE) will help quantify how well the model performed.



[17]:

[]1:

1.7 Calculate the RMSE

# Calculate RMSE between actual and predicted sales in the test set
rmse = np.sqrt(mean_squared_error (test_datal['Sales'],
wtest_data['Predicted_Sales']))

# Display the RMSE
print(f'Root Mean Squared Error (RMSE): {rmsel}')

Root Mean Squared Error (RMSE): 57005.613882539

The ARIMA model provides predictions with an RMSE of approximately 57,000, which suggests
that the model captures the general trend but underestimates the rapid rise in retail sales during
the test period.

1.8 Referneces -
Dataset:

o US Retail Sales Data (1992-2021). Provided for the assignment or sourced from inter-
nal/external data repositories.

Time Series Analysis References:

o ARIMA Modeling: Box, G. E. P.; Jenkins, G. M., & Reinsel, G. C. (2015). Time Series
Analysis: Forecasting and Control. John Wiley & Sons.

o Seasonal ARIMA (SARIMAX): Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting:
Principles and Practice. OTexts. Online

10



	DSC 630 Assignment
	Load the Dataset
	Transform the Dataset
	Plot the Data
	Key Observations:

	Split between test and train data
	Build a Predictive Model
	ARIMA model-
	Key Parts of the Output:

	Key Observations:
	Predictions on Test set -
	Observations:
	Conclusion:

	Calculate the RMSE
	Referneces -


